Exercice 1

Soit f la fonction définie sur \Box par $f(x) = \frac{3e^x - 1}{e^x + 1}$

- 1) a) Vérifier que pour tout x de \Box on a $f(x) = 3 \frac{4}{e^x + 1}$
 - b) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
- 2) a) Montrer que pour tout x de \Box on a f'(x) = $\frac{4e^x}{(e^x + 1)^2}$
 - b) Dresser le tableau de variation de f
- 3) a) Montrer que le point A(0,1) et un centre de symétrie de $\zeta_{\rm f}$
 - b) Ecrire l'équation de la tangente T au point A
- 4) Tracer T et ζ_f
- 5) a) Montrer que f admet une réciproque f -1 définie sur]-1,3[
 - b) Tracer $\zeta_{\epsilon^{-1}}$ dans le même repère
 - c) Montrer que pour tout x de]-1,3[on a $f^{-1}(x) = ln(\frac{1+x}{3-x})$

EXERCICE N°2

Soit f la fonction définie sur \Box par $f(x) = x + 1 + e^{\frac{x}{2}}$

On désigne par $\zeta_{\scriptscriptstyle f}$ sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) ; (unité graphique 1 cm)

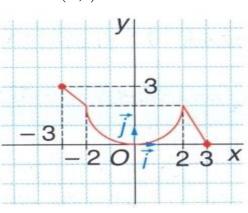
- 1/ Dresser le tableau de variation de f
- 2/a) Montrer que la droite D : y =x+1 est une asymptote à ζ_f au voisinage de $(-\infty)$
 - b) Etudier la position relative de $\zeta_{\rm f}$ et D
- 3/a) Montrer que $\lim_{x \to +\infty} \frac{e^{\frac{x}{2}}}{x} = +\infty$
 - b) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$; Interpréter graphiquement le résultat
- 4/ Tracer D et ζ_f
- 5/ Calculer l'aire de la région du plan limitée par $\zeta_{\scriptscriptstyle f}$, la droite D et les droites d'équations x= 1 et x = 2
- 6/ Soit $C = \{M(x, y) \text{ telque } y = f(x) \text{ et } 0 \le x \le 1\}$

Calculer le volume du solide S obtenu par rotation de C autour de l'axe (O, i)

EXERCICE N°3

Soit f la fonction sur [-3 ; 3] et représentée ci-contre : Sur [-2 ; 2], sa courbe représentative est un demi-cercle.

- 1) Calculer $\int_{-2}^{2} f(t)dt$ et $\int_{-3}^{3} f(t)dt$.
- 2) Soit g = -f. Calculer $\int_{-3}^{0} g(t)dt$.
- 3) soit h la fonction définie sur[-3; 3] par : h(x) = f(x) 2 calculer $\int_{-3}^{3} h(x)dx$.



EXERCICE Nº4

On pose $I_0 = \int_0^1 e^{-2x} dx$ et pour $n \in \square^*, I_n = \int_0^1 x^n e^{-2x} dx$

- 1/ Calculer I₀ et I₁
- 2/a) Montrer que $\forall n \in \square^* I_{n+1} = \frac{1}{2}((n+1)I_n e^{-2})$ et en déduire que $I_2 = \frac{1}{4}(1 5e^{-2})$
 - b) Donner la valeur de $J = \int_0^1 (5x^2 + x 3)e^{-2x} dx$
- 3/a) Montrer que $\forall x \in [0,1]$ et $n \in \square^*$ on $a: 0 \le x^n e^{-2x} \le x^n$
 - b) Montrer que $0 \le I_n \le \frac{1}{n+1}$ et déduire $\lim_{n \to +\infty} I_n$

EXERCICE N°5

Soit U la suite définie sur \square par : $\begin{cases} U_0 = 0.5 \\ U_{n+1} = U_n^2 \end{cases}$

- 1/a) Montrer par récurrence que pour tout n de \Box : $0 < U_n \le 0.5$
 - b) Montrer que U est une suite strictement décroissante
- c) En déduire que U est convergente et déterminer sa limite l
- $2/ \text{ On pose } V_n = ln(U_n)$
 - a) Montrer que pour tout n de \Box : $V_n < 0$
 - b) Montrer que V est une suite géométrique de raison 2
 - c) Exprimer V_n puis U_n en fonction de n
 - d) Retrouver $\underset{n\to+\infty}{\lim} U_n$